参考文献
[1] 王建, 李明, 张华. 中国城市交通拥堵经济损失评估研究[J]. 交通运输系统工程与信息, 2023, 23(5): 156-165.
[2] Box G E P, Jenkins G M, Reinsel G C, et al. Time series analysis: forecasting and control[M]. John Wiley & Sons, 2015.
[3] Okutani I, Stephanedes Y J. Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B: Methodological, 1984, 18(1): 1-11.
[4] Wu C H, Ho J M, Lee D T. Travel-time prediction with support vector regression[J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5(4): 276-281.
[5] Leshem G, Ritov Y. Traffic flow prediction using adaboost algorithm with random forests as a weak learner[J]. World Academy of Science, Engineering and Technology, 2007, 19: 193-198.
[6] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[7] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[C]//International Conference on Learning Representations (ICLR), 2017.
[8] Li Y, Yu R, Shahabi C, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting[C]//International Conference on Learning Representations (ICLR), 2018.
[9] Yu B, Yin H, Zhu Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. 2018: 3634-3640.
[10] Guo S, Lin Y, Feng N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33(01): 922-929.
[11] Zheng C, Fan X, Wang C, et al. GMAN: A graph multi-attention network for traffic prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(01): 1234-1241.
[12] Wu Z, Pan S, Chen F, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(1): 4-24.
[13] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in neural information processing systems. 2017: 5998-6008.
[14] Zhang J, Zheng Y, Qi D. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2017, 31(1).
[15] Yao H, Tang X, Wei H, et al. Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33(01): 5668-5675.
[16] Zhao L, Song Y, Zhang C, et al. T-GCN: A temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(9): 3848-3858.
[17] Chen C, Li K, Teo S G, et al. Gated residual recurrent graph neural networks for traffic prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33(01): 485-492.
[18] Fang S, Zhang Q, Meng G, et al. GSTNET: Global spatial-temporal network for traffic flow prediction[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. 2019: 10-16.
[19] Wang X, Chen C, Min Y, et al. Efficient metropolitan traffic prediction based on graph recurrent neural network[J]. arXiv preprint arXiv:1811.00740, 2018.
[20] Lv Z, Qin L, Xing C, et al. SDGCN: Sequential dynamic graph convolutional network for traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12281-12291.
[21] Xu M, Dai W, Liu C, et al. Spatial-temporal transformer networks for traffic flow forecasting[J]. arXiv preprint arXiv:2001.02908, 2020.
[22] Bai L, Yao L, Li C, et al. Adaptive graph convolutional recurrent network for traffic forecasting[C]//Advances in Neural Information Processing Systems. 2020, 33: 17804-17815.
[23] Jiang W, Luo J. Graph neural network for traffic forecasting: A survey[J]. Expert Systems with Applications, 2022, 207: 117921.
[24] Kingma D P, Ba J. Adam: A method for stochastic optimization[C]//International Conference on Learning Representations (ICLR), 2015.
[25] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[26] Zheng Y, Capra L, Wolfson O, et al. Urban computing: concepts, methodologies, and applications[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2014, 5(3): 1-55.
[27] Zheng Y. Methodologies for cross-domain data fusion: An overview[J]. IEEE Transactions on Big Data, 2015, 1(1): 16-34.
[28] Liang Y, Ke S, Zhang J, et al. GeoMAN: Multi-level attention networks for geo-sensory time series prediction[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. 2018: 3428-3434.
[29] Pan Z, Liang Y, Wang W, et al. Urban traffic prediction from spatio-temporal data using deep meta learning[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019: 1720-1730.
[30] Wang D, Zhang J, Cao W, et al. When will you arrive? Estimating travel time based on deep neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2018, 32(1).